首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19035篇
  免费   2334篇
  国内免费   2242篇
  2024年   18篇
  2023年   484篇
  2022年   414篇
  2021年   791篇
  2020年   904篇
  2019年   1100篇
  2018年   881篇
  2017年   738篇
  2016年   820篇
  2015年   803篇
  2014年   888篇
  2013年   1316篇
  2012年   795篇
  2011年   775篇
  2010年   674篇
  2009年   897篇
  2008年   933篇
  2007年   961篇
  2006年   1020篇
  2005年   897篇
  2004年   848篇
  2003年   763篇
  2002年   724篇
  2001年   658篇
  2000年   592篇
  1999年   474篇
  1998年   388篇
  1997年   304篇
  1996年   333篇
  1995年   280篇
  1994年   294篇
  1993年   280篇
  1992年   244篇
  1991年   184篇
  1990年   171篇
  1989年   140篇
  1988年   114篇
  1987年   105篇
  1986年   78篇
  1985年   138篇
  1984年   89篇
  1983年   56篇
  1982年   57篇
  1981年   46篇
  1980年   27篇
  1979年   22篇
  1978年   17篇
  1977年   18篇
  1976年   13篇
  1974年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
The circadian clock regulates a wide range of electrophysiological and developmental processes in plants. Here, we discuss the direct influence of a circadian clock on biologically closed electrochemical circuits in vivo. The biologically closed electrochemical circuits in the leaves of C. miniata (Kaffir lily), Aloe vera and Mimosa pudica, which regulate their physiology, were analyzed using the charge stimulation method. Plants are able to memorize daytime and nighttime. Even at continuous light or darkness, plants recognize nighttime or daytime and change the input resistance. The circadian clock can be maintained endogenously and has electrochemical oscillators, which can activate ion channels in biologically closed electrochemical circuits. The activation of voltage gated channels depends on the applied voltage, electrical charge, and the speed of transmission of electrical energy from the electrostimulator to plants.  相似文献   
22.
Respiration, which is the second most important carbon flux in ecosystems following gross primary productivity, is typically represented in biogeochemical models by simple temperature dependence equations. These equations were established in the 19th century and have been modified very little since then. Recent applications of these equations to data on soil respiration have produced highly variable apparent temperature sensitivities. This paper searches for reasons for this variability, ranging from biochemical reactions to ecosystem‐scale substrate supply. For a simple membrane‐bound enzymatic system that follows Michaelis–Menten kinetics, the temperature sensitivities of maximum enzyme activity (Vmax) and the half‐saturation constant that reflects the affinity of the enzyme for the substrate (Km) can cancel each other to produce no net temperature dependence of the enzyme. Alternatively, when diffusion of substrates covaries with temperature, then the combined temperature sensitivity can be higher than that of each individual process. We also present examples to show that soluble carbon substrate supply is likely to be important at scales ranging from transport across membranes, diffusion through soil water films, allocation to aboveground and belowground plant tissues, phenological patterns of carbon allocation and growth, and intersite differences in productivity. Robust models of soil respiration will require that the direct effects of substrate supply, temperature, and desiccation stress be separated from the indirect effects of temperature and soil water content on substrate diffusion and availability. We speculate that apparent Q10 values of respiration that are significantly above about 2.5 probably indicate that some unidentified process of substrate supply is confounded with observed temperature variation.  相似文献   
23.
Inter simple sequence repeat (ISSR) marker assay was employed to validate the genetic fidelity of Swertia chirayita plantlets multiplied in vitro by axillary multiplication upto forty-two passages. Sixteen ISSR primers generated a total of 102 amplicons among the tissue-cultured plants. Forty-eight amplicons were amplified in the outlier (a Swertia species). The outlier (negative control) was employed to rule out the possibility that the invariant fingerprint was due to chance alone and that the ISSR technique employed was not discriminatory enough to detect the off-types. A homogenous amplification profile was observed for all the micropropagated plants. The results confirmed the clonal fidelity of the tissue culture-raised S. chirayita plantlets and corroborated the fact that axillary multiplication is the safest mode for multiplication of true to type plants.  相似文献   
24.
25.
Metabolomic investigation of the freezing-tolerant Arabidopsis mutant esk1 revealed large alterations in polar metabolite content in roots and shoots. Stress metabolic markers were found to be among the most significant metabolic markers associated with the mutation, but also compounds related to growth regulation or nutrition. The metabolic phenotype of esk1 was also compared to that of wild type (WT) under various environmental constraints, namely cold, salinity and dehydration. The mutant was shown to express constitutively a subset of metabolic responses which fits with the core of stress metabolic responses in the WT. But remarkably, the most specific metabolic responses to cold acclimation were not phenocopied by esk1 mutation and remained fully inducible in the mutant at low temperature. Under salt stress, esk1 accumulated lower amounts of Na+ in leaves than the WT, and under dehydration stress its metabolic profile and osmotic potential were only slightly impacted. These phenotypes are consistent with the hypothesis of an altered water status in esk1 , which actually exhibited basic lower water content (WC) and transpiration rate (TR) than the WT. Taken together, the results suggest that ESK1 does not function as a specific cold acclimation gene, but could rather be involved in water homeostasis.  相似文献   
26.
Targeting the interaction between G-Protein Coupled Receptor, CXCR4, and its natural ligand CXCL12 is a leading strategy to mitigate cancer metastasis and reduce inflammation. Several pyridine-based compounds modeled after known small molecule CXCR4 antagonists, AMD3100 and WZ811, were synthesized. Nine hit compounds were identified. These compounds showed lower binding concentrations than AMD3100 (1000 nM) and six of the nine compounds had an effective concentration (EC) less than or equal to WZ811 (10 nM). Two of the hit compounds (2g and 2w) inhibited invasion of metastatic cells at a higher rate than AMD3100 (62%). Compounds 2g and 2w also inhibit inflammation in the same range as WZ811 in the paw edema test at 40% reduction in inflammation. These preliminary results are the promising foundation of a new class of pyridine-based CXCR4 antagonists.  相似文献   
27.
The role of invariant water molecules in the activity of plant cysteine protease is ubiquitous in nature. On analysing the 11 different Protein DataBank (PDB) structures of plant thiol proteases, the two invariant water molecules W1 and W2 (W220 and W222 in the template 1PPN structure) were observed to form H-bonds with the Ob atom of Asn 175. Extensive energy minimization and molecular dynamics simulation studies up to 2 ns on all the PDB and solvated structures clearly revealed the involvement of the H-bonding association of the two water molecules in fixing the orientation of the asparagine residue of the catalytic triad. From this study, it is suggested that H-bonding of the water molecule at the W1 invariant site better stabilizes the Asn residue at the active site of the catalytic triad.  相似文献   
28.
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号